
International Conference on Mechanical, Industrial and Energy Engineering 2022

 22-24 December, 2022, Khulna, BANGLADESH

* Corresponding author. Tel.: +82-10-3463-1978

E-mail addresses: hasan@dsmecasys.com

ICMIEE22-091

Indoor water on floor detection using monocular camera based on self-supervised segmentation

Mohammad Khairul Hasan1,*
1 R&D Center, Duksan Mecasys, Daejeon- 34139, REPUBLIC OF KOREA

ABSTRACT

In this paper, we consider the problem of detecting wet area on the floor inside a room using a monocular camera mounted near

the ceiling. We use a set of Gabor filters on a floor image and apply nonlinear transformations on the filtered images in order to

create feature images. Based on the feature images we create a feature vector for each pixel in the input image. Then we use K-

mean clustering with K=2 on the normalized feature vectors and process the resulting clusters to create wet floor segmentations.

Our experimental results show that more than 50 percent of wet area of the entire floor can be detected given that the camera

has a limited amount of motion (e.g., pan and tilt motions). This problem appears as a sub-problem in many unmanned

monitoring systems. Our method results a fast, low-cost and robust solution for this problem.

Keywords: water detection, Gabor filter, K-mean clustering, unmanned monitoring system.

1. Introduction

We consider the problem of detecting water on

floor in an indoor environment using a monocular

camera mounted near the ceiling of a room where the

camera can be moved in pan and tilt directions to cover

the entire floor area of the room. We assume that the

system is unmanned, and the main objective of this

system is to raise alarm at an early stage of possible

flooding. Indoor water detection from color images is a

difficult task. The main visible changes due to a layer of

water on a floor are (a) some portion of the wet floor

reflects light beam in a particular direction (specular

reflection) and as a result that portion looks highly

bright if the camera is placed at the direction of the

reflected light beam and (b) if the camera does not

receive reflected light beam from a wet surface, then

that surface appears slightly darker as compared to

neighboring dry surface. Since our objective is to detect

water at a very early stage, we cannot wait for the

specular reflection which may or may not come to the

camera before water crosses dangerous level. In this

paper, we propose a robust solution that uses the fact

that water presence changes the texture appearance of

the dry floor. Our algorithm in general does not depend

on any specular reflection from the water covered

surface. Since it is difficult to gather huge amount of

image data consisting of water covered floor, we have

used a self-supervised approach.

2. Related Works

Teshima et al. worked on a similar problem. They

use a moving camera to detect water based on the

specular reflection reflected from wet surface [1]. Our

case is different because we use a camera mounted in a

fixed place with little amount of motion in pan and tilt

directions. Since our system covers a wide area of floor

we cannot depend only on specular reflection. Achar et

al. proposed a self-supervised algorithm for outdoor

river scene detection [2]. Our problem is very different

from that of Achar et al. Their work separates the river

surface from the surrounding environment in an outdoor

environment whereas in our case, we need to separate

water covered surface from dry floor surface in an

indoor environment. Rankin and Matthies presented a

daytime water detection solution using color variation

[3]. Iqbal et al. published a nice review paper that gives

a survey on outdoor water hazard detections [4].

Santana et al. proposed a water detection technique

based on water motion in an outdoor environment [5].

To the best of our knowledge, there is no previous

solution for this problem under our settings. In fact, this

problem is a sub-problem of a commercial application

that we are currently working on. We searched

thoroughly but failed to get a suitable solution. The

closest solution has been given by Teshima et al. [1].

However, their solution uses a moving camera which is

not feasible for our target area (establishment of the

mechanism for moving a camera just below the ceiling

of a big room is expensive). For completeness, the

summary of our results for 16 images and the results of

Teshima et al. have been shown in Table 1.

Table 1 Comparison of our results with results of

Teshima et al.

 Precision rate (%) Recall rate (%)

Results of

Teshima et

al. [1]

81.1

34.1

Our Results Max Min Avg Max Min Avg

100 0 82.7 100 0 86.2

3. Working Environment

The main objective of our work is to detect water

layer on the floor area in a room. We assume that our

target environment has these following properties:

1. The environment is a large room with no

window.

2. There are just a few light sources on the ceiling

and a camera is mounted in a corner of the

room near the ceiling.

ICMIEE22-091- 2

3. The camera can be moved 120 deg in the pan

direction and 90 deg in the tilt direction, where

zero-degree tilt means that the camera is

directed to the horizontal direction and 90-

degree tilt means that the camera is directed to

the downward direction.

4. The camera has a high focal length (more than

70 mm) and as a result, from most of the

directions the images contain only floor area.

5. For some directions images contain the wall or

some other furniture but using suitable

segmentation algorithm we can easily separate

the floor part from the adjacent wall or

furniture parts. More precisely, since we know

the pan and tilt angle associated to each image,

we can determine (using some pre-processing

technique) which part of that image contains

floor area.

6. The working area of our algorithm is not

necessarily of rectangular shape. Although

each image is rectangular, we can use suitable

masking to work on almost any shape as we

like.

7. We split each input image into non

overlapping sub images of size 640×480 each

and ignore the remaining part (input image size

is 6720×4480). We call each sub-image a zone

image or a zone in short. Our algorithm works

on all the zones one by one.

8. We assume that at the beginning, the floor

corresponding to each zone is completely dry

and at that time the algorithm captures the

information related to the dry floor and use this

information later to detect water presence

(hence it is self-supervised). Since in the room

there is no window, we assume that

Lambertian component of dry floor surface

radiance is constant [6] and the specular

component of dry floor surface radiance is

negligible as compared to the specular

component of water covered floor surface

radiance.

9. We assume that if floor is covered by a layer of

water surface, then a major portion of the

specular reflection of each light source goes to

a particular direction. If this direction hits the

camera sensor, the image contains much bright

area (see Fig.1). This area can easily be

detected in the image by using proper

thresholding. However, since the specular

reflection depends heavily on the surface

normal, corresponding light source position,

camera position and camera orientation, only a

small portion of the entire floor area may

reflect a light beam to the camera as specular

reflection. After thresholding, we consider each

connected component of specular reflection

one by one and categorize into two groups (a)

slim: the component does not contain a circle

of radius ρ and (b) fat: the component contains

a circle of radius ρ, where ρ is a parameter,

whose value is decided empirically. We

consider that each fat component contains

water layer, and each slim component is either

a noise or a water droplet. We compute the

area of each fat component and remove them

from the image by masking and apply our

algorithm on the remaining part of the image.

We can combine water layer under each fat

component with the result returned from our

algorithm and compute approximately the

amount of water in each zone. So, from now on,

we consider that each image does not contain

any fat component.

Fig.1 Specular reflection from water surface. The red

rectangle contains a fat component, and the green

rectangle contains a slim component

4. Outline of Algorithm

We implement our algorithm on each zone

independently. In this section we will explain the

overall algorithm on a particular zone which is a

grayscale image.

Assuming that the values of D, d, and δ will be

decided later, the high-level idea of our algorithm

applied on each zone is given as follows:

1. In the preprocessing step, we collect D×D

pixel values from around the center of the zone.

In this step, the whole zone is dry. Let D-dry

be the set of D×D pixels. For each zone we

save corresponding D-dry as a bitmap image.

2. We apply the algorithm explained in the next

section to create a feature vector for each pixel

in the zone.

3. Using K-mean (K=2) Clustering algorithm we

cluster the pixels into two groups group-A and

group-B. Let {A1, A2,…An} and {B1, B2,…Bm}

be sets of connected components of group-A

and group-B respectively, where each

component contains a d×d square inside it (we

ignore any component that is too small to

contain a d×d square). Let us assume that

ICMIEE22-091- 3

A1,A2,…,An and B1,B2,…,Bm are sorted

according to their sizes in non-increasing order.

4. Let A1
d and B1

d be two d×d boxes inside A1 and

B1 found by detecting the largest circle inside

A1 and B1 respectively. We can use algorithms

explained in [7] to get these boxes. Let

da
1,da

2,da
3… are Mahalanobis distances from

each element of A1
d to the set D-dry and let ad-

dry be the average of these distances. Similarly,

we calculate bd-dry for set B1
d. If A1(B1) is

empty, then let us consider that ad-dry(bd-dry)

is zero. Without loss of generality let us

assume that ad-dry <= bd-dry. Depending on the

values of ad-dry and bd-dry we follow the

following rules:

a. Both ad-dry < δ and bd-dry < δ: the

whole zone is dry

b. Both ad-dry >= δ and bd-dry >= δ: the

whole zone is covered by water

c. ad-dry < δ and bd-dry >= δ: first

initialize W = {B1} and then for

B2,…,Bm we do the following - for

each Bi 2<=i<=m, we find a d×d box

inside Bi and find bi-dry as the

average of Mahalanobis distances

from elements in this d×d box to D-

dry. If bi-dry >= δ, we update W ←

W∪{Bi}. Finally, we consider that

the components of W indicate the wet

segments in the zone.

5. Implementation Detail

The backbone our algorithm is an unsupervised

texture segmentation which follows closely the idea

given in [8]. We capture the features from the zone

image through a set of filters, keep a subset of these

filtered images based on some greedy algorithm and

then apply a nonlinear function on these filtered images.

Finally, we apply K-mean Clustering for K=2 and apply

the algorithm explained in the previous section to detect

water on floor.

We use Gabor filter to get filtered images. A Gabor

filter in spatial domain can be given by:

𝑡 = 𝑔(𝑥, 𝑦; 𝜆, 𝜃, 𝜓, 𝜎, 𝛾) =

exp⁡(−
𝑥′

2
+ 𝛾2𝑦′

2

2𝜎2
)cos⁡(2𝜋

𝑥′

𝜆
+ 𝜓)

with

𝑥′ = 𝑥⁡𝑐𝑜𝑠⁡𝜃 + 𝑦⁡𝑠𝑖𝑛⁡𝜃⁡and⁡𝑦′ =⁡−𝑥⁡𝑠𝑖𝑛⁡𝜃 + 𝑦⁡𝑐𝑜𝑠⁡𝜃

where λ is the wavelength of the sinusoidal factor, θ

represents the orientation, ψ is the phase offset, σ is the

standard deviation and ϒ is the spatial aspect ratio.

Each zone has dimension (640×480). We applied

28 filters for each θ in {0, 45, 90, 135} and λ = {image-

width/radial-frequency} where radial-frequency ∈

{4√2, 8√2, 16√2, 32√2, 64√2, 128√2, (image-

width/4)√2}. For each filter we use a kernel of size = 17

with ψ = 1, σ = 7 and ψ = 0. In a similar way as

explained in [8], we use following steps in order to get a

feature vector for each pixel in the zone which is a

grayscale image.

1. We apply the above-mentioned Gabor filters

on the zone image to get a set of filtered

images.
2. We select a subset of filtered images in a

greedy way so that the following condition

holds: Let s(x,y) and s1(x,y) be reconstruction

of the zone images by adding all filtered image

and the selected subset of filtered images

respectively. Then,

𝑆𝑆𝐸 = ∑[𝑠1(𝑥, 𝑦) − 𝑠(𝑥, 𝑦)]2

𝑥,𝑦

𝑆𝑆𝑇𝑂𝑍𝑇 = ∑𝑠(𝑥, 𝑦)2

𝑥,𝑦

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇𝑂𝑇
≥ 0.95

We select filtered images one by one in a

greedy way until R2 becomes at least 0.95. The

greedy algorithm is same to the corresponding

algorithm explained in [8] so we skip the detail

here.
3. We apply a nonlinear transformation to each

selected filtered image. More precisely, for

each selected filtered image, we apply

normalization so that the minimum and

maximum are -8 and 8 respectively. On each

pixel of the filtered image, we apply the

following activation function and take the

absolute value with α = 0.25:

𝜑(𝑡) = tanh(𝛼𝑡) = ⁡
1 − 𝑒𝛼𝑡

1 + 𝑒𝛼𝑡

We then apply a gaussian filter of size 35×35

with σ = 0.5×image-width/radial-frequency and

call the resulting image a feature image.
4. For each pixel (row, col) of the zone image, we

create a feature vector like this: first we take

pixel values of all feature images at position

(row, col) and combine them to create a feature

vector and then we insert row, and col at the

top of this feature vector. These row and col

values in each feature vector help to combine

neighboring pixels while clustering.
5. Finally, we normalize the feature vectors

across all but top two dimensions (row, and

col). This step is not that crucial. It just helps

the K-mean Clustering algorithm work better.

ICMIEE22-091- 4

For the entire algorithm explained in the previous

section and in this section, we choose D = 200, d = 50, ρ

= 30. The value of threshold δ has been decided

empirically as 2.8. This threshold depends mainly on the

dry floor texture and can be decided in the

preprocessing stage.

6. Experiments and Results

We apply our algorithm on 16 zone-images with

size of 640×480 each, where 6 of them are completely

dry and remaining are partially wet. Fig. 2 shows a zone

image and one filter and two feature images of this zone

image. One can observe that although wet area is not

that distinctively visible in the original image, that wet

area is quite visible (as bright part) in one of the feature

images.

Fig.2 Top left: zone image, Top right: filtered image,

Bottom: two feature images

For each zone, first we compute the segmentation

that gives dry and wet floor areas. And then we compute

intersection over union IoU score for the wet area of our

segmentation result and ground truth. Our results show

that 4 zones give score over 90% each, 2 zones give

score over 60% each 1 zone gives score over 50% and

all 6 dry floor zones has been classified successfully.

One false negative result (result shows dry but there is

water on the floor) has been found and one result shows

much more water than the actual amount of water (score

= 19%). Fig.3 shows two samples where water has been

detected with sufficient accuracies (94% IoU and 96%

IoU respectively). Fig. 4 shows the sample where

accuracy is very low (19% IoU) and the sample that

gives false negative result. Let Ws and Wg be water area

from our algorithm and from ground truth respectively.

In Fig. 3 and Fig. 4, yellow part is Ws∩Wg, red part is

Wg – (Ws ∩Wg) and green part is Ws – (Ws ∩Wg). For

each zone we also compute Precision and Recall rates.

Detailed results of our experiments on 16 images are

shown in Table 2.

 It should be noted that in both the cases in Fig. 4,

the amount of water is very low. Although both have

similar amount of water, in the false negative case the

floor is bit darker than that of low accuracy case. As a

result, in the false negative case, the algorithm cannot

differentiate the dry floor part from the wet floor part.

These two zone images have been shown in Fig. 5.

Fig.3 Overlapping of segmentation results and ground

truths for two zones

Fig.4 Left: segmentation result accuracy is very low

(19 %), Right: false negative result.

Fig.5 Left: zone image for the case with low accuracy

(19 %), Right: zone image for the false negative case.

Table 2 Detailed results of our experiments

 IoU Precision

(%)

Recall

(%)

Remark

Image 01 0.941 94.9 99.1

Image 02 0.964 98.7 97.7

Image 03 0.773 77.3 100

Image 04 0.696 70 99.1

Image 05 0.917 99.8 91.9

Image 06 0.938 99.8 93.9

Image 07 0.54 97 54.9

Image 08 1 100 100 Dry floor

Image 09 1 100 100 Dry floor

Image 10 1 100 100 Dry floor

Image 11 1 100 100 Dry floor

Image 12 1 100 100 Dry floor

Image 13 1 100 100 Dry floor

Image 14 0.19 19.1 99.4

Image 15 0.355 66.5 43.3

Image 16 0 0 0 False

negative

Average 0.77 82.7 86.2

ICMIEE22-091- 5

c

5. Discussion

Water detection on floor is a difficult task specially

when the camera is monocular, and the position of light

sources are such that light beam after specular reflection

does not go to the camera sensor directly. We present a

self-supervised and efficient algorithm to detect water

on floor. Our algorithm gives good results (in terms of

IoU, Precision rate and Recall rate) for most of the cases.

In the future it would be interesting to improve the

performance of this algorithm.

8. References

[1] Teshima, T., Saito, H., Shimizu, M., & Taguchi, A.

(2009). Classification of Wet/Dry Area Based on

the Mahalanobis Distance of Feature from Time

Space Image Analysis. In MVA (pp. 467–470).

[2] Achar, S., Sankaran, B., Nuske, S., Scherer, S., &

Singh, S. (2011). Self-supervised segmentation of

river scenes. In 2011 IEEE International

Conference on Robotics and Automation (pp.

6227-6232).

[3] Rankin, A., & Matthies, L. (2010). Daytime water

detection based on color variation. In 2010

IEEE/RSJ International Conference on Intelligent

Robots and Systems (pp. 215–221).

[4] Iqbal, M., Morel, M., & Meriaudeau, F. (2009). A

survey on outdoor water hazard detection. Skripsi

Program Studi Siste Informasi..

[5] Santana, P., Mendonça, R., & Barata, J. (2012).

Water detection with segmentation guided

dynamic texture recognition. In 2012 IEEE

international conference on robotics and

biomimetics (ROBIO) (pp. 1836–1841).

[6] Ikeuchi, K., & Sato, K. (1991). Determining

reflectance properties of an object using range and

brightness images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 13(11), 1139-

1153.

[7] R. C. Gonzalez and R. E. Woods. Digital Image

Processing. Prentice-Hall, 2002

[8] Jain, A., & Farrokhnia, F. (1991). Unsupervised

texture segmentation using Gabor filters. Pattern

recognition, 24(12), 1167–1186.

